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Vortical Flow Computations on a Flexible Blended
Wing-Body Configuration
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Flows over blended wing-body configurations are often dominated by vortices. The unsteady aerodynamic
forces due to such flows can couple with the elastic forces of the wing and lead to aeroelastic oscillations. Such
aeroelastic oscillations can impair the performance of an aircraft. To study this phenomenon, it is necessary to
account for structural properties of the configuration, and solve the aerodynamic and aeroelastic equations of
motion simultaneously. In this work, the flow is modeled using the Navier-Stokes equations coupled with the
aeroelastic equations of motion. Computations are made for a blended wing-body configuration at flow
conditions dominated by vortices and separation. The computed results are validated with the available
experimental data. Almost sustained aeroelastic oscillations observed in the wind tunnel are successfully
simulated for M = 0.975, o = 8.0 deg, and a frequency of about 2 Hz.

Nomenclature
C, = coefficient of pressure
{d} = displacement vector

E, F, G, Q = flux vectors in Cartesian coordinates
[M]1, [D], [K] = modal mass, damping, and stiffness
matrices, respectively

{q} = generalized displacement vector

Re, = Reynolds number based on the root chord

U = flight velocity

u, v, w = velocity components in x, y, and z
directions, respectively

{Z} = generalized force vector

X, ¥, 2 = Cartesian coordinates

o = rigid angle of attack

®p = elastic angle of attack

A = difference between upper and lower

surface pressures

&, ¢ = general curvilinear coordinates

T = nondimensional time

[¢] = modal displacement matrix

) = quantities in generalized coordinate system
) = first derivative with respect to time

)] = second derivative with respect to time
Subscript

oo = freestream quantities

Introduction

LOWS with vortices play an important role in the devel-

opment of aircraft. In general, strong vortices form on
aircraft at large angles of attack. For aircraft with highly
swept wings, strong vortices can even form on the wings at
moderate angles of attack. The formation of vortices changes
the aerodynamic load distribution on a wing. Vortices formed
on aircraft have been known to cause several undesirable
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phenomena such as wing rock for rigid delta wings! and aeroe-
lastic oscillations for highly swept flexible wings.? Such phe-
nomena can severely impair the performance of an aircraft.
On the other hand, vortical flows can also play a positive role
in the design of an aircraft. Vortical flows associated with
rapid, unsteady motions can increase the unsteady lift, which
can be used for maneuvering the aircraft.3

To date, most of the calculations for wings with vortical
flows have been restricted to steady and unsteady computa-
tions on rigid wings. However, to accurately compute such
flows, it is necessary to account for the wing’s flexibility. The
aeroelastic deformation resulting from this flexibility can con-
siderably change the nature of the flow. Strong interactions
between the vortical flows and the structures can lead to
sustained aeroelastic oscillations for highly swept wings.2
Also, it is necessary to include the flexibility for proper corre-
lations of computed data with experiments, particularly with
those obtained from flight tests. Recent efforts have been
made to include the flexibility of wings in the calculations.* To
compute the flows accurately, it is necessary to include both
aerodynamic and structural effects of the body. In this work,
the flow is modeled using the Navier-Stokes equations coupled
with the aeroelastic equations of motion for blended wing-
body configurations. The Navier-Stokes equations are re-
quired to accurately model the viscous effects on vortical
flows.

The computer code developed for computing the unsteady
aerodynamics and aeroelasticity of aircraft by using the
Navier-Stokes equations is referred to as ENSAERO.’ The
capability of the code to compute aeroelastic responses by
simultaneously integrating the Navier-Stokes equations and
the modal structural equations of motion, using aeroelasti-
cally adaptive dynamic grids, has been demonstrated.’ The
flow is solved by time-accurate, finite difference schemes
based on the Beam-Warming algorithm. Recently, a new
streamwise upwind scheme has also been incorporated in the
code.®

In this work, the capability of the code is extended to model
the Navier-Stokes equations with the Baldwin-Lomax turbu-
lence model for blended wing-body configurations. It is noted
here that turbulence models, such as the quasisteady model of
Baldwin-Lomax currently used for the Navier-Stokes equa-
tions, still require several improvements, particularly for com-
puting self-induced unsteady flows. In this paper, computa-
tions are made for cases where the flow unsteadiness is
initiated by an initial disturbance given to the structure. The
quasisteady turbulence model is assumed to be adequate for
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this problem, but further careful investigation is needed in
using existing turbulence models for other similar cases.

In this paper, computations are presented for vortical flow
conditions about a flexible blended wing-body configuration
and the results are compared with the available experiments.
The formation of vortices and their effects on the aeroelastic
responses are demonstrated.

Governing Aerodynamic Equations
The strong conservation law form of the Navier-Stokes
equations is used for shock-capturing purposes. The thin-layer
version of the equations in generalized coordinates can be
written as’

3,Q+0:E+3,F+ 0,G=Re 3.8 1)

where O, E, F, G, and 8, are flux vectors in generalized
coordinates. The following transformations are used in deriv-

ing Eq. (1).

T=1 (2a)
£= £ nzl) (2b)
1 = 9(X,),2,t) (2c)
£ = $0ep2.0) (2d)

It should be emphasized that the thin-layer approximation is
valid only for high-Reynolds-number flows and very large
turbulent eddy viscosities invalidate the model.

To solve Eq. (1), ENSAERO has time-accurate methods
based on both central difference and upwind schemes.5 In this
paper, the central difference scheme based on the implicit
approximate factorization algorithm of Beam and Warming?®
with modifications by Pulliam and Chaussee® for diagonaliza-
tion is used. This scheme is first-order accurate in time.

The diagonal algorithm is fully implicit for the Euler equa-
tions. For the Navier-Stokes equations the diagonal algorithm
works as an explicit scheme since viscous terms on the right-
hand side of Eq. (1) are treated explicitly. The diagonal al-
gorithm is first-order accurate in time for both Euler and
Navier-Stokes equations. Numerical exercises conducted dur-
ing this work and in previous work reported in Ref. 5 showed
that the timestep size required to solve Eq. (1) is limited by
accuracy rather than stability considerations. Therefore, the
explicitness of the diagonal algorithm does not influence the
computational efficiency when solving the Navier-Stokes
equations.

For turbulent flow, the coefficient of viscosity appearing in
Eq. (1) is modeled using the Baldwin-Lomax algebraic eddy-
viscosity model.!? This isotropic model is used primarily be-
cause it is computationally efficient. All viscous computations
presented in this paper assume fully turbulent flow. This ap-
proximation is consistent with the high-Reynolds-number as-
sumption. Because of the vortex-dominated flow structures of
the blended wing-body configuration, a modification to the
original Baldwin-Lomax model is required. For this study, the
Degani-Schiff modification!! to the original model for treating
vortical flows is used. However, as noted earlier, the Baldwin-
Lomax turbulence model is based on quasisteady assump-
tions. Therefore it may be inadequate to model self-induced
flow unsteadiness.

Aeroelastic Equations of Motion

The governing aeroelastic equations of motion of a flexible
blended wing-body configuration are obtained by using the
Rayleigh-Ritz method. In this method, the resulting aeroelas-
tic displacements at any time are expressed as a function of a
finite set of assumed modes. The contribution of each as-
sumed mode to the total motion is derived by the Lagrange’s

equation. Furthermore, it is assumed that the deformation of
the continuous wing structure can be represented by deflec-
tions at a set of discrete points. This assumption facilitates the
use of discrete structural data, such as the modal vector, the
modal stiffness matrix, and the modal mass matrix. These can
be generated from a finite element analysis or from experi-
mental influence coefficient measurements. In this study, the
finite element method is employed to obtain the modal data.

It is assumed that the deformed shape of the wing can be
represented by a set of discrete displacements at selected
nodes. From the modal analysis, the displacement vector {d }
can be expressed as

{d}=I[ollq} 3

where [¢] is the modal matrix and {g]} is the generalized
displacement vector. The final matrix form of the aeroelastic
equations of motion is

[M]1tg} + [Glig} + [K1lq} = (Z} C))

where [M], [G], and [K] are modal mass, damping, and
stiffness matrices, respectively. {Z} is the aerodynamic force
vector defined as ¥ pU2[¢]7[A4] {AC, } and [A] is the diagonal
area matrix of the aerodynamic control points.

The aeroelastic equation of motion, Eq. (4), is solved by a
numerical integration technique based on the linear accelera-
tion method.!?

Acroelastic Configuration Adaptive Grids

One of the major difficulties in using the Navier-Stokes
equations for computational aerodynamics lies in the area of
grid generation. For steady flows, the advanced techniques
such as zonal grids'? are currently being used. However, grid-
generation techniques for aeroelastic calculations, which in-
volve moving components, are still in the early stages of
development. In Ref. S5, aeroelastic configuration adaptive
dynamic grids were successfully used for computing time-ac-
curate aeroelastic responses of wings. In this work, a similar
technique that is suitable for accurately simulating vortical
flows on flexible wing-body configurations is used. The grid is
designed such that the formation of vortices and their move-
ment on the wing can be captured. The grid is generated at
every timestep based on the aeroelastic position of the wing.
Details of this grid-generation technique are given in Ref. 5.

The diagonal algorithm used in the present study computes
time-accurate solutions in a geometrically nonconservative
fashion. Geometric conservativeness can improve the accuracy
of the results for moving grids. However, earlier studies have
shown that the inclusion of geometric conservativeness has
little effect on the solutions associated with the moving grids.®
The timesteps used for calculations with moving grids are
typically small enough that the error from geometric noncon-
servativeness is negligible for most practical purposes. The
validation of computed results with experiments reported in
Refs. 4 and 5 further support the use of the diagonal scheme
for computations associated with moving grids. To maintain
the efficiency and robustness of the diagonal scheme, the
present time-accurate computations are made without geomet-
ric conservativeness. Computational efficiency and robustness
of the solution method are important for computationally
intensive aeroelastic calculations with configuration-adaptive
grids.

Results

To validate the present development, computations were
made for a blended wing-body configuration shown in Fig. 1.
The root of the wing is located at the 46% wing-body semi-
span section measured from the centerline of the configura-
tion. The flexibility of the configuration starts from the wing
root. The wing has a high sweep angle of 67.5 deg measured at
the elastic axis. For this configuration, aerodynamic and
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Fig. 1 Wind-tunnel model of the blended wing-body configuration.
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Fig.2 Plot of damping vs angle of attack taken from wind-tunnel
test.

aeroelastic experimental data are given in Ref. 2. For this
sweep angle, measurements were made at various flow condi-
tions in order to investigate the effects of vortical flows on the
aeroelastic responses of the wing.

In Fig. 2, a plot of aeroelastic damping vs the angle of
attack taken from Ref. 2 shows that the configuration under-
goes limit cycle oscillations at M, = 0.975, Re, = 6.0 x 10°,
and o = 8.0 deg. At other angles of attack the configuration is
dynamically stable. It was observed in the experiment that the
configuration experienced oscillations predominantly in the
first bending mode. Hence, this oscillation is not associated
with the conventional bending-torsion flutter. The wind-tun-
nel tests did not provide the reasons for these aeroelastic
oscillations. A detailed investigation,!* based on the computa-
tions made using an inviscid transonic small perturbation code
and experiments reported in Ref. 2, led to the possibilities of
aeroelastic oscillations associated with vortices. The results in
Ref. 14 strongly ruled out any possibilities of shock-induced
oscillations and led to the possibilities of vortex-induced oscil-
lations. However, it could not be completely confirmed since
the transonic small perturbation theory cannot model vortices.
The wind-tunnel results also indicated flow separations when
the wing underwent aeroelastic oscillations. This phenomenon
is investigated in this paper by using the Navier-Stokes results
with a turbulence model.

In this paper, computations are presented at two flow con-
ditions for which detailed data were available to the author
from the wind-tunnel tests. First, computations are shown at
M,, = 0.805, Re, = 7.5 X 10%, and « = 10.5 deg at which there
are no aeroelastic oscillations. This case is selected to validate
the computational model of the configuration by comparing
the static aeroelastic data with the wind-tunnel test. Next,
computations are shown at M., = 0.975, Re. = 6.0 X 105, and
for o = 0.0, 8.0, and 12.0 deg. These cases are selected since at
o = 8.0 deg (see Fig. 2) the configuration experienced aeroe-
lastic oscillations.

The body portion of this configuration is rigid and the wing
portion is flexible. The modal data required for the aeroelastic

analysis is computed by the finite element method. Figure 3
shows the mode shapes and frequencies of the first six normal
modes for the current configuration. This modal data com-
pares well with the measured data.?

The wing-body configuration shown in Fig. 1 is modeled
using a C-H type grid of size 151 X 40 x 40. Figure 4 shows the
symmetry plane and configuration upper surface of the grid.
Earlier studies using this grid showed that it is adequate to
accurately compute the flows with vortices and separations up
to « = 12 deg for a highly swept wing.!® To further validate the
adequacy of this grid for computations using the Navier-
Stokes equations, static aeroelastic computations were made
at several flow conditions and results were compared with the
experiment. Figure 5 shows the comparison between the com-
puted and measured steady pressures at M, = 0.805, Re. =
7.5 x 105, and « = 10.5 deg. The results are plotted for four
sections which are normal to the elastic axes located along the
25% chord line. The comparisons are favorable for all span
stations. The discrepancies near the trailing edge of the 84%
semispan station are due to the simplifications made in model-
ing the tip. To simplify the grid, the tip chord is computation-
ally modeled as parallel to the freestream whereas the actual
tip is at an angle to the freestream. Figure 5 shows that the
flow is dominated by the presence of a strong vortex on the
wing and the flow is separated near the tip. This can also be
seen in the density contours plotted at four span stations in
Fig. 6 on the aeroelastically deformed wing. The presence of
the vortex on the wing can be seen at 50% and 75% wing
semispan stations in Fig. 6. The wing tip deflected by about
5% of the root chord due to aerodynamic loads. The same
order of deflection was observed in the wind-tunnel tests.?

Mode 2, f(comp) = 5.72,
f(gvt) = 5.33

Mode 1, f(comp) = 2.06,
figvt) = 1.77

a™
€ 4
% (4
g S o
-2 g N %
©— AN [ gy
A e R g
g Wm[ll‘%"’l‘}“l‘l‘l‘l‘&\\\\\\\\}}}\\ 8 =]
a s
2 2 4 =
@ - - 6 .8 10 o
o 8
Chord (=

Mode 3, f(comp) = 13.03,

f(gut) = 11.90 Mode 4, f{comp) = 14.06,

f(gvt) = 13.02

s
ﬁff({(((’x‘x’é‘{ii‘x&
N

_ T
TR
TTIIVINY

A}
A

///;77%11
.

ALY,

D
2 \\\\Qt\\

A\

Chord

pisplacements

Mode 5, f(comp) = 22.31,
f(gvt) = 21.90

T
R
N
PHRTIRRR
llllnl\\\\\{‘\\t\&

A
Ay
e

A I
0
B 2277

pisptacements

Fig. 3 First six vibrational modes of the wing-body configuration.
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sponds to that used in the wind tunnel to simulate flight
conditions at an altitude of 32,000 ft. All aeroelastic oscilla-
tions are initiated by giving a small initial disturbance to the
wing by setting the initial value of the generalized displace-
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Fig. 4 A portion of the physical grid (151 X 40 X 40) around the
surface.
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These calculations confirm the validity of the grid and aeroe-
lastic modeling of the configuration.

By using the normal modal data shown in Fig. 3, aeroelastic
responses were computed by simultaneously integrating the
flow equation [Eq. (1)] and the aeroelastic equation [Eq. (4)]
in ENSAERO. Freestream conditions are used as initial condi-
tions for the flow. The wing is started from a rigid steady-state
position. Aeroelastic responses are computed at M, = 0.975,
Re, = 6.0 x 105, and angles of attack of 0.0, 8.0, and 12.0 :
deg. The dynamic pressure is set to 1.60 psi, which corre- Fig. 7 Density contours at angles of attack of 0.0, 8.0, and 12.0 deg.
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ment g(1) to 0.01 and the remaining displacements to zero.

Steady-state computations are presented at three angles of
attack of 0.0, 8.0, and 12.0 deg. The corresponding density
contours are shown in Fig. 7. From Fig. 7 it can be seen that
vortices on the wing are present at angles of attack of 8.0 and
12.0 deg. The flow begins to separate at o = 8.0 deg and is
fully separated at o = 12.0 deg. As a result of flow separation,
the vortex near the tip is lifted off the wing for « = 12.0 deg.
This leads to lower sectional lift near the tip.

Aeroelastic computations are started from the steady-state
converged solution. Aeroelastic equations of motion are inte-
grated simultaneously with the Navier-Stokes equations. A
nondimensional timestep size that corresponds to a physical
time of 0.00024 s per timestep is used. From numerical exper-
iments, it is found that this timestep size is adequate to accu-
rately compute the time responses. ENSAERO, which runs at
a speed of 150 MFLOPS, requires 4.5 s of CPU time per
timestep on a Cray YMP using a single processor for current
241,600 grid points. For all angles of attack, the equations of
motion are integrated for 12,500 timesteps, which corresponds
to a physical time of 3.0 s. Starting from the converged steady-
state solution, which requires 5 h of CPU time, each aeroelas-
tic response requires about 16 h of CPU time.

At o = 0.0 deg the flow is fully attached throughout the
aeroelastic response. For o = 8.0 and 12.0 deg, the flow stayed
separated throughout the aeroelastic responses. The present
computations do not involve flow reattachment cases.

Figure 8 shows the unsteady sectional lift coefficients for
three angles of attack at the root; 25%, 50%, and 75% of
wing semispan stations. Since the wing is rigidly fixed to the
root, fluctuations in the lift near the root are small. The
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Fig. 8 Unsteady lift responses at angles of attack of 0.0, 8.0, and
12.0 deg.
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Fig. 9 Modal responses at angles of attack of 0.0, 8.0, and 12.0 deg.
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Fig. 10 Lift and elastic angle response at 8.0-deg angle of attack.

fluctuations in lift increase towards the tip because of the
wing’s flexibility. These fluctuations have two main compo-
nents, one due to the aeroelastic oscillations of the wing and
the other due to the unsteadiness in the flow. It is noted here
that the flow unsteadiness is initiated by an initial disturbance
given to the structure. The fluctuations for o = 0.0 deg is only
due the aeroelastic oscillations. For angles of attack of 8.0 and
12.0 deg, the fluctuations contain components from both
aeroelastic oscillations and flow unsteadiness. The contribu-
tion of flow unsteadiness to the fluctuations is greater for the
a = 8.0 deg case than for o = 12.0 deg case. This can be seen
in Fig. 8, particularly at the 75% semispan station. It is also
noticed that the magnitude of the lift for a = 12.0 deg is
smaller than that for o = 8.0 deg at the 75% semispan station.
The reduction in both the magnitude and unsteadiness of the
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lift at 12.0 deg is due to a weaker interaction between the wing
movement and vortex. One possible reason for such weaker
interaction at o =12.0 deg is the presence of a thicker
boundary layer on which the vortex rides during the oscilla-
tions. The lift reduction can also come from the reduction in
the local angle of attack due to bending. However, by studying
the structural responses it is found that the effect of the
changes in the local angle of attack is negligible when com-
pared to the effect of the changes in the flow structure.

Figure 9 shows the responses of the first mode for all three
angles of attack. The response at o = 8.0 deg has less damping
than the responses at « = 0.0 and 12.0 deg. At o = 8.0 deg,
the flow unsteadiness has strongly influenced the aeroelastic
responses. This can be seen in the acceleration response in
Fig. 9. The high-frequency oscillations associated with the flow
unsteadiness is present only for o = 8.0 deg. It is also observed
that the damping for « = 8.0 deg is approaching zero as time
reaches 3.0 s.

80— First modal response
M_, = 0.975, Re = 6.0 x 106, 0. = 8.0°
» 40
]
[
&
o 0
[}
a
2
8 a0}
_80 { i | i
500 —
250
2
8
s O
>
—250
500 [ | | |
6000 —
5 3000
g
2
§ 0
<
-3000
-6000 ! | 1 | J
0 1 2 3 4 5
Time (sec)

Fig. 11 First modal response at 8.0-deg angle of attack.

50

M,, = 0.975, Re = 6.0 x 106, ¢ = 8.0°, 75% semispan

0 5 10 15 20 25 30
Frequency (Hz)

Fig. 12 Fourier analysis results of sectional lift at 8.0-deg angle of
attack.

To further confirm the low-damping phenomenon of the
response at o = 8.0 deg, aeroelastic computations were contin-
ued for this case up to 5 s of physical time. The lift and
corresponding elastic angle-of-attack responses are shown in
Fig. 10. From both responses, it can be seen that the configu-
ration has almost reached a limit cycle oscillation before 5.0 s.
This can be further confirmed by the response of the first
mode shown in Fig. 11. All of the other five modal responses
show similar behavior. Hence, it is confirmed that the ¢onfig-
uration approaches limit cycle oscillations near « = 8.0 deg and
predominantly oscillates in its first bending mode. These re-
sults are confirmed by the wind-tunnel tests? as seen in Fig. 2.

A Fourier analysis is conducted on the lift responses to
further investigate the cause for these aeroelastic oscillations.
Typical results from Fourier analysis are shown for the 75%
semispan section in Fig. 12. This plot shows that most of the
contribution from flow unsteadiness is concentrated near the
low frequencies around 2 Hz and high frequencies around
14 Hz. The energy contribution of the flow at low frequencies
near 2 Hz has lead to almost sustained aeroelastic oscillations.
It is noted that the wing oscillated in the wind tunnel at a
frequency of about 2 Hz.

Because of the lack of detailed flow measurements, the
wind-tunnel results cannot provide the complete explanation
for the phenomenon of angle-of-attack dependent aeroelastic
oscillations. Also, conventional flutter analysis cannot pro-
vide an explanation since it does not account for vortices and
flow separations. Based on the present computations, the
following explanation can be given for the phenomenon. At
a = 0.0 deg, the flow is fully attached and free from vortices.
Based on the classical flutter theory, the swept wing is stable at
these conditions. At o = 8.0 deg, the flow is dominated by the
presence of a strong vortex on the wing with small amounts of
flow separation near the tip. The presence of a strong vortex
leads to higher suction pressure on the wing as seen.in Fig. 7.
At these conditions, there is a strong interaction between the
structure and the flow. Since the flow is very sensitive to any
disturbance, it is highly unsteady. As a result, any small dis-
turbance leads to almost sustained aeroelastic oscillations as
seen in Figs. 10 and 11. At « = 12.0 deg, the flow is fully
separated and the boundary layer becomes thick as seen in Fig.
7. As aresult, there is a weak interaction between the structure
and flow and any disturbance quickly damps out.

Conclusions

In this paper, a computational procedure for computing the
unsteady flows associated with vortices on flexible blended
wing-body configurations has been presented. The procedure
is based on a time-accurate computational method suitable for
aeroelastically adaptive dynamic grids. To accurately model
the viscous effects on the vortices, the flow is modeled using
the Navier-Stokes equations. The flow equations are coupled
with the structural equations to account for the flexibility.
Based on this work, the following can be concluded:

1) The Navier-Stokes results are in good agreement with the
static aeroelastic pressure measurements.

2) The computed results exhibit almost sustained oscilla-
tions previously seen in the wind tunnel. Earlier inviscid re-
sults could not show this phenomenon.

3) The unsteady vortex interaction can cause aeroelastic
oscillations.

4) The present work does not include validation of un-
steady aerodynamic data since no such data is currently avail-
able from the measurements. The preceding conclusions are
based on the validation of the code ENSAERO for unsteady
flows in the earlier work and also the validation of static and
dynamic aeroelastic response results in this work.

5) Experiments that generate a detailed data base for both
aerodynamic and aeroelastic validation are needed.

6) The use of quasisteady turbulence models may impose a
severe limitation to the successful extension of this approach
to the computation of self-induced flow unsteadiness. There-



Downloaded by NASA Ames Research Center on October 24, 2012 | http://arc.aiaa.org | DOI: 10.2514/3.11252

GURUSWAMY: FLEXIBLE BLENDED WING BODY 2503

fore, future efforts need to concentrate on modifying current
turbulence models.

7) The geometric and structural data are too large to pre-
sent within the page limitations of this paper. However, those
who are interested can obtain the data through NASA by
writing a letter to the author.
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